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Optimal Search Procedures* 

Summary-This paper sets up a restricted class of search pro- 
cedures for a satellite lost in a region of the sky. The satellite must 
be found by a radar search. The procedures under coneidera&n 
allow the use of a preliminary search, which may be done with a 
wider beam than is required for the final search. The purpose of the 
preliminary search is to obtain a ranking of the various portions 
of the sky, so that the final search can examine the more likely 
regions of the sky fist. It is shown that a preliminary search can 
reduce the expected search time, with no matter how wide a beam 
it is carried out. It is also shown that the preliminary search with 

I the narrowest possible beam is best. f l&d? .  

UPPOSE ONE is searching for a satellite or space 
probe with a radar beam. Suppose that the satellite s is known to be in a certain portion of the sky 

composed of say ,4 “cells.” A priori, the satellite is as 
likely to be in any one cell as in any other; the radar 
beam must stay on the “correct” cell an amount of time 
t,, say, in order to find the satellite and then track it if 
it is there. One must find the correct ceii by t h i s  process. 
One method of search is to search each cell for the time 
t ,  just once until the object is found; it is the purpose of 
this paper to examine the consequences of other methods 
of search. 

Consider search procedures of the followipg- type. We 
allow ourselves to search regions of the sky of more than 
one cell by widening the antenna beam. Also, *we need not 
a t  first search each cell for time t ,  (even if the beam isn’t 
widened), but may niake preliniinary searches for less 
time and go back later to search for time tl. We assume 
a radar system in which the averaged return from an 
individual cell is p ( >  0) when the satellite is present in 
the cell, 0 when it is absent. Additive white Gaussian 
noise of the sanie spectral density for different, cells, and 
independent for different cells, is in the system; the noise 
has the effect of ‘adding to the signal a Gaussian variable 
of variance u2 when an individual cell is observed for 
time to, say. The parameter p/u is assumed known; this is 
not an unreasonable assumption in view of the fact that 
one knows about how far away the satellite is, and also 
the approximate system temperature. The noise in the 
system is due mainly to receiver temperature. The “sky 
noise” is considered of secondary importance in this paper. 

Under the above assumptions, when searching a region 
of 1: cells for time t, the signal decreases by a factor of 
l / k ,  whereas the noise variance changes by a factor of 
to/t. Thus, we niay regard the signal as cc in the search 
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with k cells clumped if the satellite is present in the region, 
and 0 if it is absent from the region, if we regard the 
noise variance as ku2to/t. We first consider strategies of the 
following special type, called two-stage procedures. 

Divide the A-celled portion of the sky in which the 
satellite is known to be into n regions of 7n = A/n  cells 
each. Then search each of these n regions for time t each, 
where t is to be determined. Rank the n regions in order of 
decreasing return, with the region giving the highest 
return first. Search each region cell by cell for time t,, 
starting with the first region. The problem is to choose 
n and t so as to minimize the expected search time. 

We first observe that we should take n = A .  For the 
equivalent noise variance (the signal being regarded as 
constant), when searching a region of 112 cells for time t ,  is 
the same as the equivalent noise variance obtained in the 
system which searches each of the 712 cells of the region 

from the fact that the variance of a sum of independent 
random variables is the sum of the variances. But having 
added the 7n returns, we would be discarding the extra 
information as to which of the m cells had the highest 
return. In the clumped procedure we would be searching 
the m cells in random order, whereas in the unclumped 
procedure we search all the cells in order of decreasing 
likelihood. Since the equivalent noise variances are the 
same in either case, the unclumped search must yield a 
smaller expected search time. A similar argument shows 
that it is better to ignore the regional boundaries, namely, 
to rank all the cells in order of decreasing return and 
search the cell with highest return first, the cell with 
second highest return second, etc., even if they occur in 
different regions. For once we know that it is better to 
“remember11 the returns of the individual cells, a search 
which examines the more likely cells first yields a lower 
expected search time than any other procedure. Now 
consider a procedure which reverses the ranking which two 
cells i and j received according to their return; that is, 
suppose cell i had a higher return than cell j ,  but that we 
are given a procedure which examines j before it examines 
i. In the definition of expected search time as an expected 
value, the two procedures agree everywhere except in the 
terms involving cell i and cell j. Suppose cell i is the ith 
cell in order of decreasing return, and cell j the jth with 
i < j .  The sum for the expected search time in the given 
case has terms if, pr (satellite is in cell j )  + jt, pr (satellite 
is in cell i), i t ,  being the time it takes to find the satellite 
if it is in fact in cell j under this procedure. The procedure 
to be proved optimum has instead the terms i t ,  pr (satellite 
is in cell i) + jt, pr (satellite is in cell j ) .  Since pr (satellite 
is in cell i) > pr (satellite is in cell j ) ,  because cell i had a 
higher return, the second sum is smaller than the first. 

for tiiie i = t,/m n d  then adds the E ~ Z ~ R S .  This fe!!~ms 
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Thus, given any two cells, it is better to search them in 
order of decreasing return. Since any permutation of 
1, 2, - , n can be obtained by interchanging two indexes 
at a time, the search procedure which searches each cell 
in order of decreasing return is better than a procedure 
which searches the cells in any other order. This proves 
the assertion. 

In this paper, we are ignoring the time it takes to move 
the radar beam from cell to cell; however, this time may be 
crucial since the cells are scattered in the portion of the 
sky by the ranking they have obtained from the pre- 
liminary search. If n is taken less than A ,  this difficulty 
may be avoided by using a spiral scan of the regions of 
A/n cells; the beam must then be moved only after the 
spiral scan of the region is completed. In  fact, the pre- 
liminary search could perhaps be carried out with a 
lighter, wider beamed, finder antenna (this is analogous 
to the use of a finder telescope in optical astronomy). 
We shall see that a saving is possible over the method 
which searches each cell for time t ,  with no preliminary 
search, for any n, 2 5 n 2 A ,  and that one can get near 
the maximum savings (which we have proven occurs when 
n = A )  with fairly small n. 

Fixing n and t ,  we shall get a formula for the expected 
search time E(t) and then minimize E(t )  with respect to 
t, keeping n fixed. Now E(t) is a sum of three terms. 
The first is nt, the price we pay in the preliminary search 
process. The second is a term equal to the expected time of 
search of the region containing the correct cell. This 
term is x:=, it, pr (cell i is correct, given that the region 
in question contains the correct cell) 

When n = 1, this gives t , ( (A + 1)/2) as the expected 
search time without preliminary search. We thus must 
prove that the minimum of E( t )  in t 2 0 for each n, 
2 5 n 2 A is less than tl ( ( A  + 1)/2). The third and most 
interesting term contributing to the expected search time 
is the time wasted in searching those regions, whose returns 
have by chance come out higher than the return of the 
region containing the correct cell. This third term may be 
computed as follows. It equals the expected number of 
regions with a higher return than the region containing 
the correct cell times the time wasted in searching each of 
these incorrect regions; this wasted time is wit,. The 
expected number of incorrect regions ranked before the 
correct one is the number of incorrect regions, n - 1, times 
the probability that a given incorrect region is ranked 
before the correct one (even though the events in which 
different incorrect regions are ranked before the correct 
one are not independent). Thus, we must compute the 
probability that a given incorrect region is ranked before 
the correct one. 

This reversal of position will occur if and only if the 
return from the incorrect region exceeds the return from 
the correct region; that is, if and only if a normal variate 
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of mean 0, variance ma2(to/t) = a2to/7 = a: say, exceeds 
an independent normal variate of mean p, variance u:, 
(if and only if the difference of these two variates is 
positive). Now the difference of two independent normal 
variates also has a normal density, whose mean is the 
difference of the two means and whose variance is the sum 
of the two variances. Thus we must compute the prob- 
ability that a normal variate of mean - p ,  variance 
2a:, exceeds 0; we prefer to think of this as the probability 
that a unit normal variate z (mean 0, variance 1) exceeds 
p / d % , ,  which we may write as pr (z > p/&a,). The 
term under discussion contributing to E(t) is thus found 
to be 

We now have the required formula for E(t), 

We shall now minimize E(t) .  Differentiate E( t )  with 
respect to t ;  we obtain 

where +(p)  is the unit normal density function of w .  Using 
a7 = ad*, this becomes 

This formula exhibits E‘(t) as an increasing function of 
t in t 2. 0; thus E(t) is a convex function of t in t 2 0. 
Since E(t) -+ as t + m, we have shown that E(t) has 
a unique minimum in t 2 O at, say f. 
But 

m + l  A + 1  
= tl(-) + mt,r+) = j l ( T ) .  

(This formula can also be proved by noting that the 
expected search time in the two-stage process as t + 0 
must approach the expected search time in the method 
which examines each cell with no preliminary search.) 
Also E’(0) = - 00 , so that E(t) is less than t , ( (A  + 1)/2) 
near zero. This proves that f > 0 and thus proves that a 
saving is possible for any n, 2 5 n 5 A .  

We shall now find 2. Rewrite (2) as 
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then t satisfies the following equat,ion where f = i/m: 

or 

Define x = x ( n ,  p/u ,  t l / to )  by 

4n 
1 n - 1  -+(x) = -* 
X 

(5)  

The expected saving S using this procediire iiistead of 
the method which searches each cell with no preliminary 
search is 

A + 1  ' m  + 1 s = t l ( T )  - nt - tl(,-)) 

- mt,(n - l)pr(z > x ) ,  

or 

(7) 
2 At,$' s = mt,(n - l)pr(O < z < x) - 2' (4 
\ U/ 

From this it can be proved that S increases with increasing 
n, 2 5 n 5 A .  Since x clearly increases with n, we see 
that nt, the total time spent in the preliminary search, 
also increases with n, being proportional to x2. However, t 
decreases with n; we shall not prove this here. We also 
define the fractional saving 

I 

(7 

Since the solution of (5) x does not depend upon A ,  we 
see that f hardly depends upon A.  

An important point to bring out now is this; we can 
never find the satellite with certainty no matter how large 
t ,  is in comparison with to, that is, no matter how sinall the 
variance of the noise is in a search for time t , .  In practice 
one accepts a confidence lecel a(0 < a < 1) ;  that is, one 
chooses t ,  so large that the probability of saying the 
satellite is present in a cell when it is absent is 1 - a, or 
of saying that it is absent when it is present is 1 - a. 
The level a is chosen so small (in comparison with A )  that 
the effect on the search of an error at any cell of either 
kind is negligible. One says that the satellite is present 
if the return exceeds p / 2  and is absent if the return is less 
than p / 2  in the time t , ;  this is the maximum likelihood 
criterion. The probability of either kind of error is then 
pr ( z  > (y/2)/~-), where z has the unit normal 
density. For confidence level a, we must have 

Define z(a)  by 

then ( ~ / 2 ) / ~ t o / t l  = z(a) ,  or 

Consider (8) as defining f as a function f(n) of n. We see 
from (3)  that since 

n 
1 n - 1  
- f#+) = 
X 2(a) 

(12) 

3: depends only on n and a, but not on any other param- 
eters. Eq. (8) becomes 

f(71) = - ' A  ((+) pr(0 < z < x )  - 
,4 + 1 

where z is given by (12). Thus f(n) depends soley on n, 
,4 and a, and not on any of the other parameters. When 
a = 0.999, z (a)  = 3.10 and we have, from ( II ) ,  

u f =  
t , ( q J )  

thus, 

f = a [ t + ) p r ( 0  A + l  < z < x) - - 
search amounts to only a few final cells' worth of time. 

This determines the signal-to-noise ratio required. 
Fig. 1 graphs f ( n )  vs n for a = 0.999 and A = G4. m7e 

see that if n is not too small, f(n) does not, change much. 
k'or n = 8, we find f,'tl = 0.45; 811 the total time spent 
in preliminary search, =3.6tl and f = 0.51. For n = 64, 
we find f/tl = O.Oi35,  G4Z = 4. i t ,  and f = 0.67, the maxi- 
mum possible saving with this method and these param- 
eters and only 4 more saving than the case n = 8. We see 
that with these cases the preliminary search corresponds to 
a "quick look," in that the total time spent in preliminary 
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Fig. 1--f(n) vs n. 

We now discuss multistage, as opposed to two-stage, 
procedures. Here there are several kinds of aggregates of 
cells: cells, regions, regions of regions, etc. It is assumed 
that no “memory” is left from previous stages, but only 
the ordering is recorded. We claim the following: the 
optimal multistage procedure is the two-stage procedure 
with n = A .  For proof, suppose we have a multistage 
procedure with s > 2 stages. We shall find a two-stage 
procedure with smaller expected search time. The last 
stage is by definition always a cell by cell search of all the 
A cells, in some order depending on the results of the 
previous stages, for time t ,  chosen to insure the given 
coddence level. We shall call the regions which occur in 
stage s - i regions of type s - i. Consider the region of 
type s - 2 containing the correct cell. We know from the 
argument given at  the beginning of this paper that it is 
better to search the region of type s - 2 by a preliminary 
search of each cell rather than by a preliminary search of 
regions of more than one cell obtained by clumping. 
That is, we may assume that the given procedure has 
regions of type s - 1 consisting of one cell each. As before, 
it is still better to ignore the boundaries of the regions of 
type s - 2 in conducting the final cell by cell search for 
time tl per cell; rather, one should rank the returns of all 
the cells at stage s - 1, regardless of which region of type 
s - 2 they are in, and then search each cell for time tl at 
the final stage. This means that the rankings obtained from 
stages s - 2 and earlier are not used at  all in the final 
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search. This proves that there is a two-stage procedure 
with smaller expected search time. 

One can also consider the case of n-multiple finder 
antennas. Here the preliminary search is carried out on all 
the n regions simultaneously so that even more savings 
can be realized. This system may be more easily imple- 
mentable than the system which uses the original antenna 
as a finder antenna. The mathematical treatment is 
similar, the only difference comes from an initial term of t 
in (1) instead of nt. Define z2 by the analogue of ( 5 ) :  

4n 

I 
64 

Calling the optimum preliminary search time 7, one then 
has 

- 2mt0 t = -. 
(ET 

The details are omitted. 
This type of search problem can arise in other contexts. 

For example, one may be searching for a narrow-band 
radar return lost in part of a wider, noisy, Doppler band. 
The same methods and results would apply. See [I]. 

It is to be mentioned that most types of search problems 
consider the minimization of the number of steps required 
to find a lost or hidden object. Here we have minimized 
the expected time of search. The question arises as to what 
the optimum strategy for minimizing the expected search 
time would be in the situation described in this paper. 
Here there is no restriction that the final search be a 
cell-by-cell search for the same time tl per cell, or even 
that the search be broken down into well defined stages. 
Furthermore, all the information gathered on the previous 
searches is to be used, not only rankings. In  a paper now in 
preparation by the author and H. C. Rumsey, Jr., it will 
be shown that the optimal strategy for minimizing the 
expected search time is as follows, even without the 
assumption that each cell is a priori equally likely. Search 
the most likely cell until it is no longer the most likely, then 
search the cell which has become the most likely. A 
formula is found for the minimum; it looks something like 
the entropy of the a priori distribution, but is not pro- 
portional to the entropy. This will give another measure of 
the uncertainty of a finite probability distribution, the 
relevant definition for the search problem. These ideas will 
be examined further in the above-mentioned paper. 
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